Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.11637
Cited By
Poisoning Federated Recommender Systems with Fake Users
18 February 2024
Ming Yin
Yichang Xu
Minghong Fang
Neil Zhenqiang Gong
AAML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Poisoning Federated Recommender Systems with Fake Users"
7 / 7 papers shown
Title
An Empirical Study of the Impact of Federated Learning on Machine Learning Model Accuracy
Haotian Yang
Z. Wang
Benson Chou
Sophie Xu
Hao Wang
Jingxian Wang
Qizhen Zhang
FedML
93
0
0
26 Mar 2025
Poisoning Attacks and Defenses to Federated Unlearning
Wenbin Wang
Qiwen Ma
Zifan Zhang
Yuchen Liu
Zhuqing Liu
Minghong Fang
MU
FedML
77
2
0
29 Jan 2025
Do We Really Need to Design New Byzantine-robust Aggregation Rules?
Minghong Fang
Seyedsina Nabavirazavi
Zhuqing Liu
Wei Sun
S. Iyengar
Haibo Yang
AAML
OOD
76
6
0
29 Jan 2025
Poisoning Attacks on Federated Learning-based Wireless Traffic Prediction
Zifan Zhang
Minghong Fang
Jiayuan Huang
Yuchen Liu
AAML
43
8
0
22 Apr 2024
FLCert: Provably Secure Federated Learning against Poisoning Attacks
Xiaoyu Cao
Zaixi Zhang
Jinyuan Jia
Neil Zhenqiang Gong
FedML
OOD
73
59
0
02 Oct 2022
Data Poisoning Attacks and Defenses to Crowdsourcing Systems
Minghong Fang
Minghao Sun
Qi Li
Neil Zhenqiang Gong
Jinhua Tian
Jia-Wei Liu
47
34
0
18 Feb 2021
FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping
Xiaoyu Cao
Minghong Fang
Jia Liu
Neil Zhenqiang Gong
FedML
108
611
0
27 Dec 2020
1