Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.12072
Cited By
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
19 February 2024
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview"
17 / 17 papers shown
Title
Text-guided Explorable Image Super-resolution
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
32
7
0
02 Mar 2024
Evaluating Adversarial Robustness of Low dose CT Recovery
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
Hannah Dröge
Michael Moeller
OOD
AAML
16
3
0
18 Feb 2024
Denoising Diffusion Models for Plug-and-Play Image Restoration
Yuanzhi Zhu
K. Zhang
Jingyun Liang
Jiezhang Cao
B. Wen
Radu Timofte
Luc Van Gool
DiffM
58
193
0
15 May 2023
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Berthy T. Feng
Jamie Smith
Michael Rubinstein
Huiwen Chang
Katherine L. Bouman
William T. Freeman
DiffM
74
85
0
23 Apr 2023
Robustness of Deep Equilibrium Architectures to Changes in the Measurement Model
Jun-Hao Hu
S. Shoushtari
Zihao Zou
Jiaming Liu
Zhixin Sun
Ulugbek S. Kamilov
32
4
0
01 Nov 2022
On Adversarial Robustness of Deep Image Deblurring
Kanchana Vaishnavi Gandikota
Paramanand Chandramouli
Michael Moeller
31
11
0
05 Oct 2022
Theoretical Perspectives on Deep Learning Methods in Inverse Problems
Jonathan Scarlett
Reinhard Heckel
M. Rodrigues
Paul Hand
Yonina C. Eldar
AI4CE
16
29
0
29 Jun 2022
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
Andreas Lugmayr
Martin Danelljan
Andrés Romero
F. I. F. Richard Yu
Radu Timofte
Luc Van Gool
DiffM
203
1,330
0
24 Jan 2022
Palette: Image-to-Image Diffusion Models
Chitwan Saharia
William Chan
Huiwen Chang
Chris A. Lee
Jonathan Ho
Tim Salimans
David J. Fleet
Mohammad Norouzi
DiffM
VLM
325
1,570
0
10 Nov 2021
Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
Giannis Daras
Joseph Dean
A. Jalal
A. Dimakis
DRL
174
82
0
15 Feb 2021
Deep Learning Methods for Solving Linear Inverse Problems: Research Directions and Paradigms
Yanna Bai
Wei-Neng Chen
Jie Chen
Weisi Guo
21
64
0
27 Jul 2020
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
56
36
0
18 Mar 2020
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit Menon
Alexandru Damian
Shijia Hu
Nikhil Ravi
Cynthia Rudin
OOD
DiffM
180
536
0
08 Mar 2020
Regularization by Denoising: Clarifications and New Interpretations
E. T. Reehorst
Philip Schniter
54
211
0
06 Jun 2018
Learning Deep Gradient Descent Optimization for Image Deconvolution
Dong Gong
Zhen Zhang
Javen Qinfeng Shi
Anton van den Hengel
Chunhua Shen
Yanning Zhang
52
81
0
10 Apr 2018
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
166
596
0
22 Sep 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
229
74,467
0
18 May 2015
1