ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12706
  4. Cited By
Learning Causal Domain-Invariant Temporal Dynamics for Few-Shot Action
  Recognition

Learning Causal Domain-Invariant Temporal Dynamics for Few-Shot Action Recognition

20 February 2024
Yuke Li
Guangyi Chen
Ben Abramowitz
Stefano Anzellotti
Donglai Wei
    TTA
ArXivPDFHTML

Papers citing "Learning Causal Domain-Invariant Temporal Dynamics for Few-Shot Action Recognition"

3 / 3 papers shown
Title
Transforming Game Play: A Comparative Study of DCQN and DTQN
  Architectures in Reinforcement Learning
Transforming Game Play: A Comparative Study of DCQN and DTQN Architectures in Reinforcement Learning
William A. Stigall
43
0
0
14 Oct 2024
ActionCLIP: A New Paradigm for Video Action Recognition
ActionCLIP: A New Paradigm for Video Action Recognition
Mengmeng Wang
Jiazheng Xing
Yong Liu
VLM
149
360
0
17 Sep 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,568
0
09 Mar 2017
1