ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12810
  4. Cited By
PIP-Net: Pedestrian Intention Prediction in the Wild

PIP-Net: Pedestrian Intention Prediction in the Wild

20 February 2024
Mohsen Azarmi
Mahdi Rezaei
He Wang
Sebastien Glaser
ArXivPDFHTML

Papers citing "PIP-Net: Pedestrian Intention Prediction in the Wild"

3 / 3 papers shown
Title
GTransPDM: A Graph-embedded Transformer with Positional Decoupling for Pedestrian Crossing Intention Prediction
GTransPDM: A Graph-embedded Transformer with Positional Decoupling for Pedestrian Crossing Intention Prediction
Chen Xie
Ciyun Lin
Xiaoyu Zheng
Bowen Gong
Dayong Wu
ViT
36
0
0
30 Sep 2024
Feature Importance in Pedestrian Intention Prediction: A Context-Aware
  Review
Feature Importance in Pedestrian Intention Prediction: A Context-Aware Review
Mohsen Azarmi
Mahdi Rezaei
He Wang
Ali Arabian
34
1
0
11 Sep 2024
Local and Global Contextual Features Fusion for Pedestrian Intention
  Prediction
Local and Global Contextual Features Fusion for Pedestrian Intention Prediction
Mohsen Azarmi
Mahdi Rezaei
Tanveer Hussain
Chenghao Qian
36
8
0
01 May 2023
1