ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12971
  4. Cited By
How Temporal Unrolling Supports Neural Physics Simulators

How Temporal Unrolling Supports Neural Physics Simulators

20 February 2024
Bjoern List
Li-Wei Chen
Kartik Bali
Nils Thuerey
    AI4CE
ArXivPDFHTML

Papers citing "How Temporal Unrolling Supports Neural Physics Simulators"

7 / 7 papers shown
Title
Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
  Transformers
Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh Transformers
Steeven Janny
Aurélien Béneteau
Madiha Nadri Wolf
Julie Digne
Nicolas Thome
Christian Wolf
AI4CE
71
32
0
16 Feb 2023
Koopman Neural Forecaster for Time Series with Temporal Distribution
  Shifts
Koopman Neural Forecaster for Time Series with Temporal Distribution Shifts
Rui Wang
Yihe Dong
Sercan Ö. Arik
Rose Yu
AI4TS
23
22
0
07 Oct 2022
A Fine-Grained Analysis on Distribution Shift
A Fine-Grained Analysis on Distribution Shift
Olivia Wiles
Sven Gowal
Florian Stimberg
Sylvestre-Alvise Rebuffi
Ira Ktena
Krishnamurthy Dvijotham
A. Cemgil
OOD
215
196
0
21 Oct 2021
On the difficulty of learning chaotic dynamics with RNNs
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
51
50
0
14 Oct 2021
A Perspective on Machine Learning Methods in Turbulence Modelling
A Perspective on Machine Learning Methods in Turbulence Modelling
Andrea Beck
Marius Kurz
AI4CE
22
77
0
23 Oct 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
616
0
13 Mar 2020
1