ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.17660
  4. Cited By
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular
  Simulations

TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations

27 February 2024
Raúl P. Peláez
Guillem Simeon
Raimondas Galvelis
Antonio Mirarchi
Peter K. Eastman
Stefan Doerr
Philipp Thölke
T. Markland
Gianni de Fabritiis
    AI4CE
ArXivPDFHTML

Papers citing "TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations"

6 / 6 papers shown
Title
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein
  Thermodynamics
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics
Antonio Mirarchi
Raúl P. Peláez
Guillem Simeon
Gianni de Fabritiis
13
3
0
26 Sep 2024
SPICE, A Dataset of Drug-like Molecules and Peptides for Training
  Machine Learning Potentials
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
24
105
0
21 Sep 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
73
211
0
23 Jun 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
142
242
0
01 May 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1