ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.00258
  4. Cited By
"Lossless" Compression of Deep Neural Networks: A High-dimensional
  Neural Tangent Kernel Approach

"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach

1 March 2024
Lingyu Gu
Yongqiang Du
Yuan Zhang
Di Xie
Shiliang Pu
Robert C. Qiu
Zhenyu Liao
ArXivPDFHTML

Papers citing ""Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach"

6 / 6 papers shown
Title
Random Matrix Analysis to Balance between Supervised and Unsupervised
  Learning under the Low Density Separation Assumption
Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption
Vasilii Feofanov
Malik Tiomoko
Aladin Virmaux
31
5
0
20 Oct 2023
On the Equivalence between Implicit and Explicit Neural Networks: A
  High-dimensional Viewpoint
On the Equivalence between Implicit and Explicit Neural Networks: A High-dimensional Viewpoint
Zenan Ling
Zhenyu Liao
Robert C. Qiu
32
0
0
31 Aug 2023
Random matrices in service of ML footprint: ternary random features with
  no performance loss
Random matrices in service of ML footprint: ternary random features with no performance loss
Hafiz Tiomoko Ali
Zhenyu Liao
Romain Couillet
36
7
0
05 Oct 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
139
684
0
31 Jan 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
348
0
14 Jun 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
1