ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.00877
  4. Cited By
Disaggregated Multi-Tower: Topology-aware Modeling Technique for
  Efficient Large-Scale Recommendation

Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation

1 March 2024
Liang Luo
Buyun Zhang
Michael Tsang
Yinbin Ma
Ching-Hsiang Chu
Yuxin Chen
Shen Li
Yuchen Hao
Yanli Zhao
Guna Lakshminarayanan
Ellie Wen
Jongsoo Park
Dheevatsa Mudigere
Maxim Naumov
ArXivPDFHTML

Papers citing "Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation"

6 / 6 papers shown
Title
Phantora: Live GPU Cluster Simulation for Machine Learning System Performance Estimation
Phantora: Live GPU Cluster Simulation for Machine Learning System Performance Estimation
Jianxing Qin
Jingrong Chen
Xinhao Kong
Yongji Wu
Liang Luo
Z. Wang
Ying Zhang
Tingjun Chen
Alvin R. Lebeck
Danyang Zhuo
83
0
0
02 May 2025
Pre-train and Search: Efficient Embedding Table Sharding with
  Pre-trained Neural Cost Models
Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models
Daochen Zha
Louis Feng
Liangchen Luo
Bhargav Bhushanam
Zirui Liu
...
J. McMahon
Yuzhen Huang
Bryan Clarke
A. Kejariwal
Xia Hu
50
7
0
03 May 2023
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
D. Khudia
Jianyu Huang
Protonu Basu
Summer Deng
Haixin Liu
Jongsoo Park
M. Smelyanskiy
FedML
MQ
43
46
0
13 Jan 2021
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
43
68
0
21 Oct 2020
Deep Learning Training in Facebook Data Centers: Design of Scale-up and
  Scale-out Systems
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
38
95
0
20 Mar 2020
Parameter Hub: a Rack-Scale Parameter Server for Distributed Deep Neural
  Network Training
Parameter Hub: a Rack-Scale Parameter Server for Distributed Deep Neural Network Training
Liang Luo
Jacob Nelson
Luis Ceze
Amar Phanishayee
Arvind Krishnamurthy
64
121
0
21 May 2018
1