ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.01370
29
0

Depth Estimation Algorithm Based on Transformer-Encoder and Feature Fusion

3 March 2024
Linhan Xia
Junbang Liu
Tong Wu
    ViT
    MDE
ArXivPDFHTML
Abstract

This research presents a novel depth estimation algorithm based on a Transformer-encoder architecture, tailored for the NYU and KITTI Depth Dataset. This research adopts a transformer model, initially renowned for its success in natural language processing, to capture intricate spatial relationships in visual data for depth estimation tasks. A significant innovation of the research is the integration of a composite loss function that combines Structural Similarity Index Measure (SSIM) with Mean Squared Error (MSE). This combined loss function is designed to ensure the structural integrity of the predicted depth maps relative to the original images (via SSIM) while minimizing pixel-wise estimation errors (via MSE). This research approach addresses the challenges of over-smoothing often seen in MSE-based losses and enhances the model's ability to predict depth maps that are not only accurate but also maintain structural coherence with the input images. Through rigorous training and evaluation using the NYU Depth Dataset, the model demonstrates superior performance, marking a significant advancement in single-image depth estimation, particularly in complex indoor and traffic environments.

View on arXiv
Comments on this paper