ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.02920
  4. Cited By
TaylorShift: Shifting the Complexity of Self-Attention from Squared to
  Linear (and Back) using Taylor-Softmax

TaylorShift: Shifting the Complexity of Self-Attention from Squared to Linear (and Back) using Taylor-Softmax

5 March 2024
Tobias Christian Nauen
Sebastián M. Palacio
Andreas Dengel
ArXivPDFHTML

Papers citing "TaylorShift: Shifting the Complexity of Self-Attention from Squared to Linear (and Back) using Taylor-Softmax"

3 / 3 papers shown
Title
Understanding the differences in Foundation Models: Attention, State
  Space Models, and Recurrent Neural Networks
Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks
Jerome Sieber
Carmen Amo Alonso
A. Didier
M. Zeilinger
Antonio Orvieto
AAML
31
7
0
24 May 2024
On The Computational Complexity of Self-Attention
On The Computational Complexity of Self-Attention
Feyza Duman Keles
Pruthuvi Maheshakya Wijewardena
C. Hegde
39
107
0
11 Sep 2022
Big Bird: Transformers for Longer Sequences
Big Bird: Transformers for Longer Sequences
Manzil Zaheer
Guru Guruganesh
Kumar Avinava Dubey
Joshua Ainslie
Chris Alberti
...
Philip Pham
Anirudh Ravula
Qifan Wang
Li Yang
Amr Ahmed
VLM
246
1,982
0
28 Jul 2020
1