Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.05996
Cited By
Dissecting Deep RL with High Update Ratios: Combatting Value Divergence
9 March 2024
Marcel Hussing
C. Voelcker
Igor Gilitschenski
Amir-massoud Farahmand
Eric Eaton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dissecting Deep RL with High Update Ratios: Combatting Value Divergence"
8 / 8 papers shown
Title
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
C. Voelcker
Marcel Hussing
Eric Eaton
Amir-massoud Farahmand
Igor Gilitschenski
39
1
0
11 Oct 2024
Normalization and effective learning rates in reinforcement learning
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
James Martens
H. V. Hasselt
Razvan Pascanu
Will Dabney
19
7
0
01 Jul 2024
Overestimation, Overfitting, and Plasticity in Actor-Critic: the Bitter Lesson of Reinforcement Learning
Michal Nauman
Michal Bortkiewicz
Piotr Milo's
Tomasz Trzciñski
M. Ostaszewski
Marek Cygan
OffRL
22
16
0
01 Mar 2024
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
H. V. Hasselt
Razvan Pascanu
James Martens
Will Dabney
AI4CE
50
30
0
29 Feb 2024
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Aaron C. Courville
OnRL
85
178
0
16 May 2022
Is High Variance Unavoidable in RL? A Case Study in Continuous Control
Johan Bjorck
Carla P. Gomes
Kilian Q. Weinberger
57
23
0
21 Oct 2021
Estimation Error Correction in Deep Reinforcement Learning for Deterministic Actor-Critic Methods
Baturay Saglam
Enes Duran
Dogan C. Cicek
Furkan B. Mutlu
Suleyman Serdar Kozat
OffRL
29
12
0
22 Sep 2021
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics
Arsenii Kuznetsov
Pavel Shvechikov
Alexander Grishin
Dmitry Vetrov
129
184
0
08 May 2020
1