ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.06870
  4. Cited By
Semantic Residual Prompts for Continual Learning

Semantic Residual Prompts for Continual Learning

11 March 2024
Martin Menabue
Emanuele Frascaroli
Matteo Boschini
E. Sangineto
Lorenzo Bonicelli
Angelo Porrello
Simone Calderara
    CLL
    VLM
ArXivPDFHTML

Papers citing "Semantic Residual Prompts for Continual Learning"

5 / 5 papers shown
Title
Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
RunQing Wu
Fei Ye
QiHe Liu
Guoxi Huang
Jinyu Guo
Rongyao Hu
CLL
91
0
0
15 Jan 2025
Closed-form merging of parameter-efficient modules for Federated Continual Learning
Closed-form merging of parameter-efficient modules for Federated Continual Learning
Riccardo Salami
Pietro Buzzega
Matteo Mosconi
Jacopo Bonato
Luigi Sabetta
Simone Calderara
FedML
MoMe
CLL
29
2
0
23 Oct 2024
CLIP with Generative Latent Replay: a Strong Baseline for Incremental
  Learning
CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning
Emanuele Frascaroli
Aniello Panariello
Pietro Buzzega
Lorenzo Bonicelli
Angelo Porrello
Simone Calderara
VLM
CLL
35
3
0
22 Jul 2024
PromptFusion: Decoupling Stability and Plasticity for Continual Learning
PromptFusion: Decoupling Stability and Plasticity for Continual Learning
Haoran Chen
Zuxuan Wu
Xintong Han
Menglin Jia
Yu-Gang Jiang
CLL
104
12
0
13 Mar 2023
Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
322
2,108
0
02 Sep 2021
1