ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07741
  4. Cited By
Uncertainty Quantification with Deep Ensembles for 6D Object Pose
  Estimation
v1v2 (latest)

Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), 2024
12 March 2024
Kira Wursthorn
Markus Hillemann
Markus Ulrich
ArXiv (abs)PDFHTML

Papers citing "Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation"

3 / 3 papers shown
Uncertainty-Aware Knowledge Distillation for Compact and Efficient 6DoF Pose Estimation
Uncertainty-Aware Knowledge Distillation for Compact and Efficient 6DoF Pose Estimation
Nassim Ali Ousalah
Anis Kacem
Enjie Ghorbel
Emmanuel Koumandakis
Djamila Aouada
378
1
0
17 Mar 2025
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
D. Wolf
Alexander Braun
Markus Ulrich
526
0
0
18 Dec 2024
The Role of Predictive Uncertainty and Diversity in Embodied AI and
  Robot Learning
The Role of Predictive Uncertainty and Diversity in Embodied AI and Robot Learning
Ransalu Senanayake
301
11
0
06 May 2024
1