ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07842
  4. Cited By
Quantifying and Mitigating Privacy Risks for Tabular Generative Models

Quantifying and Mitigating Privacy Risks for Tabular Generative Models

12 March 2024
Chaoyi Zhu
Jiayi Tang
Hans Brouwer
Juan F. Pérez
Marten van Dijk
Lydia Y. Chen
ArXivPDFHTML

Papers citing "Quantifying and Mitigating Privacy Risks for Tabular Generative Models"

2 / 2 papers shown
Title
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
129
268
0
25 Sep 2021
Model Extraction and Defenses on Generative Adversarial Networks
Model Extraction and Defenses on Generative Adversarial Networks
Hailong Hu
Jun Pang
SILM
MIACV
26
14
0
06 Jan 2021
1