ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07954
  4. Cited By
Optimizing Polynomial Graph Filters: A Novel Adaptive Krylov Subspace
  Approach

Optimizing Polynomial Graph Filters: A Novel Adaptive Krylov Subspace Approach

12 March 2024
Keke Huang
Wencai Cao
Hoang Ta
Xiaokui Xiao
Pietro Lió
ArXivPDFHTML

Papers citing "Optimizing Polynomial Graph Filters: A Novel Adaptive Krylov Subspace Approach"

5 / 5 papers shown
Title
GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
Jianxin Wei
Yizheng Zhu
Xiaokui Xiao
Ergute Bao
Yin Yang
Kuntai Cai
Beng Chin Ooi
AAML
27
0
0
06 Jul 2024
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks:
  Heterophily, Over-smoothing, and Over-squashing
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing
Keke Huang
Yu Guang Wang
Ming Li
Pietro Lió
35
17
0
21 May 2024
How Powerful are Spectral Graph Neural Networks
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
70
178
0
23 May 2022
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,072
0
13 Feb 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,230
0
24 Nov 2016
1