ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08438
  4. Cited By
Reproducibility and Geometric Intrinsic Dimensionality: An Investigation
  on Graph Neural Network Research

Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research

13 March 2024
Tobias Hille
Maximilian Stubbemann
Tom Hanika
    AI4CE
ArXivPDFHTML

Papers citing "Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research"

5 / 5 papers shown
Title
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
175
256
0
18 Apr 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
84
445
0
04 Jan 2021
Heterogeneous Graph Transformer
Heterogeneous Graph Transformer
Ziniu Hu
Yuxiao Dong
Kuansan Wang
Yizhou Sun
167
1,157
0
03 Mar 2020
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Minimax Rates for Estimating the Dimension of a Manifold
Minimax Rates for Estimating the Dimension of a Manifold
Jisu Kim
Alessandro Rinaldo
Larry A. Wasserman
153
24
0
03 May 2016
1