Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.08506
Cited By
DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain Generalization in Federated Learning
11 March 2024
Sikai Bai
Jiewei Zhang
Shuaicheng Li
Song Guo
Jingcai Guo
Jun Hou
Tao Han
Xiaocheng Lu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain Generalization in Federated Learning"
7 / 7 papers shown
Title
FedMVP: Federated Multi-modal Visual Prompt Tuning for Vision-Language Models
Mainak Singha
Subhankar Roy
Sarthak Mehrotra
Ankit Jha
Moloud Abdar
Biplab Banerjee
Elisa Ricci
VLM
VPVLM
108
0
0
29 Apr 2025
Ten Challenging Problems in Federated Foundation Models
Tao Fan
Hanlin Gu
Xuemei Cao
Chee Seng Chan
Qian Chen
...
Y. Zhang
Xiaojin Zhang
Zhenzhe Zheng
Lixin Fan
Qiang Yang
FedML
73
3
0
14 Feb 2025
Visual-Language Prompt Tuning with Knowledge-guided Context Optimization
Hantao Yao
Rui Zhang
Changsheng Xu
VLM
VPVLM
122
193
0
23 Mar 2023
Mitigating Both Covariate and Conditional Shift for Domain Generalization
Jianxin Lin
Yongqiang Tang
Junping Wang
Wensheng Zhang
OOD
18
3
0
17 Sep 2022
Gradient Masked Averaging for Federated Learning
Irene Tenison
Sai Aravind Sreeramadas
Vaikkunth Mugunthan
Edouard Oyallon
Irina Rish
Eugene Belilovsky
FedML
57
24
0
28 Jan 2022
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
322
2,249
0
02 Sep 2021
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
396
2,576
0
03 Sep 2019
1