ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.10931
  4. Cited By
Uncertainty-Aware Adapter: Adapting Segment Anything Model (SAM) for
  Ambiguous Medical Image Segmentation

Uncertainty-Aware Adapter: Adapting Segment Anything Model (SAM) for Ambiguous Medical Image Segmentation

16 March 2024
Mingzhou Jiang
Jiaying Zhou
Junde Wu
Tianyang Wang
Yueming Jin
Min Xu
    MedIm
ArXivPDFHTML

Papers citing "Uncertainty-Aware Adapter: Adapting Segment Anything Model (SAM) for Ambiguous Medical Image Segmentation"

4 / 4 papers shown
Title
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
T. Kaiser
Thomas Norrenbrock
Bodo Rosenhahn
42
0
0
08 May 2025
Probabilistic 3D segmentation for aleatoric uncertainty quantification
  in full 3D medical data
Probabilistic 3D segmentation for aleatoric uncertainty quantification in full 3D medical data
Christiaan G. A. Viviers
Amaan Valiuddin
Peter H. N. de With
Fons van der Sommen
15
4
0
01 May 2023
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
229
74,467
0
18 May 2015
1