ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.11338
25
3

Ensembling and Test Augmentation for Covid-19 Detection and Covid-19 Domain Adaptation from 3D CT-Scans

17 March 2024
F. Bougourzi
Féryal Windal Moulaï
H. Benhabiles
Fadi Dornaika
Abdelmalik Taleb-Ahmed
    3DPC
ArXivPDFHTML
Abstract

Since the emergence of Covid-19 in late 2019, medical image analysis using artificial intelligence (AI) has emerged as a crucial research area, particularly with the utility of CT-scan imaging for disease diagnosis. This paper contributes to the 4th COV19D competition, focusing on Covid-19 Detection and Covid-19 Domain Adaptation Challenges. Our approach centers on lung segmentation and Covid-19 infection segmentation employing the recent CNN-based segmentation architecture PDAtt-Unet, which simultaneously segments lung regions and infections. Departing from traditional methods, we concatenate the input slice (grayscale) with segmented lung and infection, generating three input channels akin to color channels. Additionally, we employ three 3D CNN backbones Customized Hybrid-DeCoVNet, along with pretrained 3D-Resnet-18 and 3D-Resnet-50 models to train Covid-19 recognition for both challenges. Furthermore, we explore ensemble approaches and testing augmentation to enhance performance. Comparison with baseline results underscores the substantial efficiency of our approach, with a significant margin in terms of F1-score (14 %). This study advances the field by presenting a comprehensive methodology for accurate Covid-19 detection and adaptation, leveraging cutting-edge AI techniques in medical image analysis.

View on arXiv
Comments on this paper