ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13097
  4. Cited By
Simple Ingredients for Offline Reinforcement Learning

Simple Ingredients for Offline Reinforcement Learning

19 March 2024
Edoardo Cetin
Andrea Tirinzoni
Matteo Pirotta
A. Lazaric
Yann Ollivier
Ahmed Touati
    OffRL
ArXivPDFHTML

Papers citing "Simple Ingredients for Offline Reinforcement Learning"

8 / 8 papers shown
Title
Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning
Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning
Abdullah Akgul
Manuel Haußmann
M. Kandemir
OffRL
64
1
0
17 Jan 2025
Offline Imitation Learning with Suboptimal Demonstrations via Relaxed
  Distribution Matching
Offline Imitation Learning with Suboptimal Demonstrations via Relaxed Distribution Matching
Lantao Yu
Tianhe Yu
Jiaming Song
W. Neiswanger
Stefano Ermon
OffRL
58
16
0
05 Mar 2023
The Primacy Bias in Deep Reinforcement Learning
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Aaron C. Courville
OnRL
85
178
0
16 May 2022
AW-Opt: Learning Robotic Skills with Imitation and Reinforcement at
  Scale
AW-Opt: Learning Robotic Skills with Imitation and Reinforcement at Scale
Yao Lu
Karol Hausman
Yevgen Chebotar
Mengyuan Yan
Eric Jang
...
Ted Xiao
A. Irpan
Mohi Khansari
Dmitry Kalashnikov
Sergey Levine
OffRL
87
60
0
09 Nov 2021
Offline Reinforcement Learning with Implicit Q-Learning
Offline Reinforcement Learning with Implicit Q-Learning
Ilya Kostrikov
Ashvin Nair
Sergey Levine
OffRL
206
832
0
12 Oct 2021
Learning Pessimism for Robust and Efficient Off-Policy Reinforcement
  Learning
Learning Pessimism for Robust and Efficient Off-Policy Reinforcement Learning
Edoardo Cetin
Oya Celiktutan
OffRL
32
16
0
07 Oct 2021
EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
  and Online RL
EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL
Seyed Kamyar Seyed Ghasemipour
Dale Schuurmans
S. Gu
OffRL
207
119
0
21 Jul 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,944
0
04 May 2020
1