Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks

The lack of transparency of Deep Neural Networks continues to be a limitation that severely undermines their reliability and usage in high-stakes applications. Promising approaches to overcome such limitations are Prototype-Based Self-Explainable Neural Networks (PSENNs), whose predictions rely on the similarity between the input at hand and a set of prototypical representations of the output classes, offering therefore a deep, yet transparent-by-design, architecture. In this paper, we introduce a probabilistic reformulation of PSENNs, called Prob-PSENN, which replaces point estimates for the prototypes with probability distributions over their values. This provides not only a more flexible framework for an end-to-end learning of prototypes, but can also capture the explanatory uncertainty of the model, which is a missing feature in previous approaches. In addition, since the prototypes determine both the explanation and the prediction, Prob-PSENNs allow us to detect when the model is making uninformed or uncertain predictions, and to obtain valid explanations for them. Our experiments demonstrate that Prob-PSENNs provide more meaningful and robust explanations than their non-probabilistic counterparts, while remaining competitive in terms of predictive performance, thus enhancing the explainability and reliability of the models.
View on arXiv@article{vadillo2025_2403.13740, title={ Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks }, author={ Jon Vadillo and Roberto Santana and Jose A. Lozano and Marta Kwiatkowska }, journal={arXiv preprint arXiv:2403.13740}, year={ 2025 } }