ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13749
  4. Cited By
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph
  Representational Learning

Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning

20 March 2024
Raffaele Paolino
Sohir Maskey
Pascal Welke
Gitta Kutyniok
ArXivPDFHTML

Papers citing "Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning"

5 / 5 papers shown
Title
Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN
  Expressiveness
Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN Expressiveness
Bohang Zhang
Jingchu Gai
Yiheng Du
Qiwei Ye
Di He
Liwei Wang
41
33
0
16 Jan 2024
Generalized Laplacian Positional Encoding for Graph Representation
  Learning
Generalized Laplacian Positional Encoding for Graph Representation Learning
Sohir Maskey
Alipanah Parviz
Maximilian Thiessen
Hannes Stärk
Ylli Sadikaj
Haggai Maron
AI4CE
29
15
0
28 Oct 2022
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
178
907
0
02 Mar 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
154
1,748
0
02 Mar 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1