ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14138
22
5

Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference

21 March 2024
Junyoung Kim
Junwon Seo
Jihong Min
    UQCV
ArXivPDFHTML
Abstract

Robotic mapping with Bayesian Kernel Inference (BKI) has shown promise in creating semantic maps by effectively leveraging local spatial information. However, existing semantic mapping methods face challenges in constructing reliable maps in unstructured outdoor scenarios due to unreliable semantic predictions. To address this issue, we propose an evidential semantic mapping, which can enhance reliability in perceptually challenging off-road environments. We integrate Evidential Deep Learning into the semantic segmentation network to obtain the uncertainty estimate of semantic prediction. Subsequently, this semantic uncertainty is incorporated into an uncertainty-aware BKI, tailored to prioritize more confident semantic predictions when accumulating semantic information. By adaptively handling semantic uncertainties, the proposed framework constructs robust representations of the surroundings even in previously unseen environments. Comprehensive experiments across various off-road datasets demonstrate that our framework enhances accuracy and robustness, consistently outperforming existing methods in scenes with high perceptual uncertainties.

View on arXiv
Comments on this paper