ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.15474
35
0

EC-IoU: Orienting Safety for Object Detectors via Ego-Centric Intersection-over-Union

3 January 2025
Brian Hsuan-Cheng Liao
Chih-Hong Cheng
Hasan Esen
Alois Knoll
    EgoV
ArXivPDFHTML
Abstract

This paper presents Ego-Centric Intersection-over-Union (EC-IoU), addressing the limitation of the standard IoU measure in characterizing safety-related performance for object detectors in navigating contexts. Concretely, we propose a weighting mechanism to refine IoU, allowing it to assign a higher score to a prediction that covers closer points of a ground-truth object from the ego agent's perspective. The proposed EC-IoU measure can be used in typical evaluation processes to select object detectors with better safety-related performance for downstream tasks. It can also be integrated into common loss functions for model fine-tuning. While geared towards safety, our experiment with the KITTI dataset demonstrates the performance of a model trained on EC-IoU can be better than that of a variant trained on IoU in terms of mean Average Precision as well.

View on arXiv
Comments on this paper