Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.16442
Cited By
If CLIP Could Talk: Understanding Vision-Language Model Representations Through Their Preferred Concept Descriptions
25 March 2024
Reza Esfandiarpoor
Cristina Menghini
Stephen H. Bach
CoGe
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"If CLIP Could Talk: Understanding Vision-Language Model Representations Through Their Preferred Concept Descriptions"
6 / 6 papers shown
Title
What do we learn from inverting CLIP models?
Hamid Kazemi
Atoosa Malemir Chegini
Jonas Geiping
S. Feizi
Tom Goldstein
21
3
0
05 Mar 2024
Linearly Mapping from Image to Text Space
Jack Merullo
Louis Castricato
Carsten Eickhoff
Ellie Pavlick
VLM
159
104
0
30 Sep 2022
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Does Vision-and-Language Pretraining Improve Lexical Grounding?
Tian Yun
Chen Sun
Ellie Pavlick
VLM
CoGe
32
30
0
21 Sep 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
3,683
0
11 Feb 2021
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
393
2,576
0
03 Sep 2019
1