ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.18309
  4. Cited By
Bayesian Learned Models Can Detect Adversarial Malware For Free

Bayesian Learned Models Can Detect Adversarial Malware For Free

27 March 2024
Bao Gia Doan
Dang Quang Nguyen
Paul Montague
Tamas Abraham
O. Vel
S. Çamtepe
S. Kanhere
Ehsan Abbasnejad
D. Ranasinghe
    AAML
ArXivPDFHTML

Papers citing "Bayesian Learned Models Can Detect Adversarial Malware For Free"

3 / 3 papers shown
Title
Can We Leverage Predictive Uncertainty to Detect Dataset Shift and
  Adversarial Examples in Android Malware Detection?
Can We Leverage Predictive Uncertainty to Detect Dataset Shift and Adversarial Examples in Android Malware Detection?
Deqiang Li
Tian Qiu
Shuo Chen
Qianmu Li
Shouhuai Xu
AAML
54
11
0
20 Sep 2021
Leveraging Uncertainty for Improved Static Malware Detection Under
  Extreme False Positive Constraints
Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
A. Nguyen
Edward Raff
Charles K. Nicholas
James Holt
28
21
0
09 Aug 2021
secml-malware: Pentesting Windows Malware Classifiers with Adversarial
  EXEmples in Python
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Luca Demetrio
Battista Biggio
AAML
24
11
0
26 Apr 2021
1