ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.20221
  4. Cited By
Graph Neural Aggregation-diffusion with Metastability

Graph Neural Aggregation-diffusion with Metastability

29 March 2024
Kaiyuan Cui
Xinyan Wang
Zicheng Zhang
Weichen Zhao
ArXivPDFHTML

Papers citing "Graph Neural Aggregation-diffusion with Metastability"

10 / 10 papers shown
Title
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Z. Liu
Xiaoda Wang
Bohan Wang
Zijie Huang
Carl Yang
Wei-dong Jin
AI4TS
AI4CE
69
0
0
29 Mar 2025
S-Diff: An Anisotropic Diffusion Model for Collaborative Filtering in Spectral Domain
Rui Xia
Yanhua Cheng
Yongxiang Tang
Xiaocheng Liu
Xialong Liu
Lisong Wang
Peng Jiang
DiffM
28
0
0
03 Jan 2025
Gradient Gating for Deep Multi-Rate Learning on Graphs
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
74
53
0
02 Oct 2022
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
87
554
0
04 Jan 2021
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
42
101
0
24 Aug 2020
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
145
828
0
28 Sep 2019
Contextual Stochastic Block Models
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
100
151
0
23 Jul 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,935
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1