Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.06114
Cited By
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
9 April 2024
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey"
15 / 15 papers shown
Title
VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
Lucas Heublein
Simon Kocher
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
DRL
29
1
0
14 Apr 2025
VcLLM: Video Codecs are Secretly Tensor Codecs
Ceyu Xu
Yongji Wu
Xinyu Yang
Beidi Chen
Matthew Lentz
Danyang Zhuo
Lisa Wu Wills
45
0
0
29 Jun 2024
Resource Allocation and Workload Scheduling for Large-Scale Distributed Deep Learning: A Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Chengming Li
Victor C. M. Leung
Yanyi Guo
Xiping Hu
35
3
0
12 Jun 2024
Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging
Todd C. Hollon
Cheng Jiang
Asadur Chowdury
Mustafa Nasir-Moin
A. Kondepudi
...
M. Snuderl
S. Camelo-Piragua
C. Freudiger
Ho Hin Lee
D. Orringer
21
86
0
23 Mar 2023
Varuna: Scalable, Low-cost Training of Massive Deep Learning Models
Sanjith Athlur
Nitika Saran
Muthian Sivathanu
R. Ramjee
Nipun Kwatra
GNN
25
62
0
07 Nov 2021
Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines
Shigang Li
Torsten Hoefler
GNN
AI4CE
LRM
77
94
0
14 Jul 2021
NUQSGD: Provably Communication-efficient Data-parallel SGD via Nonuniform Quantization
Ali Ramezani-Kebrya
Fartash Faghri
Ilya Markov
V. Aksenov
Dan Alistarh
Daniel M. Roy
MQ
40
27
0
28 Apr 2021
ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training
Chia-Yu Chen
Jiamin Ni
Songtao Lu
Xiaodong Cui
Pin-Yu Chen
...
Naigang Wang
Swagath Venkataramani
Vijayalakshmi Srinivasan
Wei Zhang
K. Gopalakrishnan
24
65
0
21 Apr 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
65
14
0
16 Feb 2021
An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems
A. Abdelmoniem
Ahmed Elzanaty
Mohamed-Slim Alouini
Marco Canini
49
73
0
26 Jan 2021
FedHome: Cloud-Edge based Personalized Federated Learning for In-Home Health Monitoring
Qiong Wu
Xu Chen
Zhi Zhou
Junshan Zhang
FedML
150
183
0
14 Dec 2020
HierTrain: Fast Hierarchical Edge AI Learning with Hybrid Parallelism in Mobile-Edge-Cloud Computing
Deyin Liu
Xu Chen
Zhi Zhou
Qing Ling
22
45
0
22 Mar 2020
Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
Shuiguang Deng
Hailiang Zhao
Weijia Fang
Jianwei Yin
Schahram Dustdar
Albert Y. Zomaya
63
598
0
02 Sep 2019
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
133
1,663
0
14 Apr 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,190
0
16 Aug 2016
1