ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.07194
  4. Cited By
VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes
  Enhance Protein Binding Site Identification

VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes Enhance Protein Binding Site Identification

10 April 2024
Florian Sestak
Lisa Schneckenreiter
Johannes Brandstetter
Sepp Hochreiter
Andreas Mayr
G. Klambauer
ArXivPDFHTML

Papers citing "VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes Enhance Protein Binding Site Identification"

7 / 7 papers shown
Title
Accurate Pocket Identification for Binding-Site-Agnostic Docking
Accurate Pocket Identification for Binding-Site-Agnostic Docking
Y. Balytskyi
Inna Hubenko
A. Balytska
Christopher V. Kelly
58
0
0
04 Feb 2025
Cayley Graph Propagation
Cayley Graph Propagation
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
32
5
0
04 Oct 2024
E(n) Equivariant Topological Neural Networks
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
52
5
0
24 May 2024
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Joshua Southern
Francesco Di Giovanni
Michael M. Bronstein
J. Lutzeyer
57
1
0
22 May 2024
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
139
410
0
04 Oct 2022
Frame Averaging for Invariant and Equivariant Network Design
Frame Averaging for Invariant and Equivariant Network Design
Omri Puny
Matan Atzmon
Heli Ben-Hamu
Ishan Misra
Aditya Grover
Edward James Smith
Y. Lipman
FedML
49
128
0
07 Oct 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
1