ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.08809
  4. Cited By
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification
  in scientific machine learning

Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning

12 April 2024
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
ArXivPDFHTML

Papers citing "Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning"

3 / 3 papers shown
Title
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1