ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.08829
  4. Cited By
Measuring the Predictability of Recommender Systems using Structural
  Complexity Metrics

Measuring the Predictability of Recommender Systems using Structural Complexity Metrics

12 April 2024
Alfonso Valderrama
Andrés Abeliuk
ArXivPDFHTML

Papers citing "Measuring the Predictability of Recommender Systems using Structural Complexity Metrics"

2 / 2 papers shown
Title
On the Generalizability and Predictability of Recommender Systems
On the Generalizability and Predictability of Recommender Systems
Duncan C. McElfresh
Sujay Khandagale
Jonathan Valverde
John P. Dickerson
Colin White
33
10
0
23 Jun 2022
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
161
312
0
30 Oct 2017
1