ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09774
  4. Cited By
RandAlign: A Parameter-Free Method for Regularizing Graph Convolutional
  Networks

RandAlign: A Parameter-Free Method for Regularizing Graph Convolutional Networks

15 April 2024
Haimin Zhang
Min Xu
ArXivPDFHTML

Papers citing "RandAlign: A Parameter-Free Method for Regularizing Graph Convolutional Networks"

5 / 5 papers shown
Title
Optimization-Induced Graph Implicit Nonlinear Diffusion
Optimization-Induced Graph Implicit Nonlinear Diffusion
Qi Chen
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
DiffM
42
32
0
29 Jun 2022
Graph Neural Networks with Learnable Structural and Positional
  Representations
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
A. Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
179
304
0
15 Oct 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
178
907
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,726
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1