ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09816
  4. Cited By
FedP3: Federated Personalized and Privacy-friendly Network Pruning under
  Model Heterogeneity

FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity

15 April 2024
Kai Yi
Nidham Gazagnadou
Peter Richtárik
Lingjuan Lyu
ArXivPDFHTML

Papers citing "FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity"

4 / 4 papers shown
Title
Efficient and Light-Weight Federated Learning via Asynchronous
  Distributed Dropout
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Chen Dun
Mirian Hipolito Garcia
C. Jermaine
Dimitrios Dimitriadis
Anastasios Kyrillidis
26
13
0
28 Oct 2022
Permutation Compressors for Provably Faster Distributed Nonconvex
  Optimization
Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
Rafal Szlendak
A. Tyurin
Peter Richtárik
104
33
0
07 Oct 2021
FedProto: Federated Prototype Learning across Heterogeneous Clients
FedProto: Federated Prototype Learning across Heterogeneous Clients
Yue Tan
Guodong Long
Lu Liu
Tianyi Zhou
Qinghua Lu
Jing Jiang
Chengqi Zhang
FedML
125
287
0
01 May 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
148
206
0
26 Feb 2021
1