Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.10764
Cited By
Confidential Federated Computations
16 April 2024
Hubert Eichner
Daniel Ramage
Kallista A. Bonawitz
Dzmitry Huba
Tiziano Santoro
Brett McLarnon
Timon Van Overveldt
Nova Fallen
Peter Kairouz
Albert Cheu
Katharine Daly
Adria Gascon
Marco Gruteser
Brendan McMahan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Confidential Federated Computations"
6 / 6 papers shown
Title
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
53
5
0
11 Oct 2024
Elephants Do Not Forget: Differential Privacy with State Continuity for Privacy Budget
Jiankai Jin
C. Chuengsatiansup
Toby C. Murray
Benjamin I. P. Rubinstein
Y. Yarom
Olga Ohrimenko
25
6
0
31 Jan 2024
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
64
181
0
06 Dec 2021
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
99
135
0
08 Nov 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
178
193
0
26 Feb 2021
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
Matthias Paulik
M. Seigel
Henry Mason
Dominic Telaar
Joris Kluivers
...
Dominic Hughes
O. Javidbakht
Fei Dong
Rehan Rishi
Stanley Hung
FedML
175
126
0
16 Feb 2021
1