ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.12770
16
0

Camera Agnostic Two-Head Network for Ego-Lane Inference

19 April 2024
Chaehyeon Song
Sungho Yoon
Minhyeok Heo
Ayoung Kim
Sujung Kim
    EgoV
ArXivPDFHTML
Abstract

Vision-based ego-lane inference using High-Definition (HD) maps is essential in autonomous driving and advanced driver assistance systems. The traditional approach necessitates well-calibrated cameras, which confines variation of camera configuration, as the algorithm relies on intrinsic and extrinsic calibration. In this paper, we propose a learning-based ego-lane inference by directly estimating the ego-lane index from a single image. To enhance robust performance, our model incorporates the two-head structure inferring ego-lane in two perspectives simultaneously. Furthermore, we utilize an attention mechanism guided by vanishing point-and-line to adapt to changes in viewpoint without requiring accurate calibration. The high adaptability of our model was validated in diverse environments, devices, and camera mounting points and orientations.

View on arXiv
Comments on this paper