ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.14061
  4. Cited By
FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph
  Federated Learning

FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph Federated Learning

22 April 2024
Yinlin Zhu
Xunkai Li
Zhengyu Wu
Di Wu
Miao Hu
Ronghua Li
    FedML
ArXivPDFHTML

Papers citing "FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph Federated Learning"

5 / 5 papers shown
Title
Rethinking Federated Graph Learning: A Data Condensation Perspective
Rethinking Federated Graph Learning: A Data Condensation Perspective
Hao Zhang
Xunkai Li
Y. X. Zhu
Lianglin Hu
FedML
DD
AI4CE
47
0
0
05 May 2025
Towards Unbiased Federated Graph Learning: Label and Topology Perspectives
Towards Unbiased Federated Graph Learning: Label and Topology Perspectives
Zhengyu Wu
Boyang Pang
Xunkai Li
Y. X. Zhu
Daohan Su
Bowen Fan
R. Li
Guoren Wang
Chenghu Zhou
FedML
33
0
0
14 Apr 2025
Federated Prototype Graph Learning
Federated Prototype Graph Learning
Zhengyu Wu
Xunkai Li
Y. X. Zhu
R. Li
Guoren Wang
Chenghu Zhou
FedML
36
0
0
13 Apr 2025
Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks
Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks
Yuang Jia
Xiaojuan Shan
Jun-Xiong Xia
Guancheng Wan
Y. Zhang
Wenke Huang
Mang Ye
Stan Z. Li
42
0
0
01 Apr 2025
Homophily Heterogeneity Matters in Graph Federated Learning: A Spectrum Sharing and Complementing Perspective
Homophily Heterogeneity Matters in Graph Federated Learning: A Spectrum Sharing and Complementing Perspective
Wentao Yu
FedML
53
0
0
20 Feb 2025
1