ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.14968
38
0

CenterArt: Joint Shape Reconstruction and 6-DoF Grasp Estimation of Articulated Objects

23 April 2024
Sassan Mokhtar
Eugenio Chisari
Nick Heppert
Abhinav Valada
    3DPC
ArXivPDFHTML
Abstract

Precisely grasping and reconstructing articulated objects is key to enabling general robotic manipulation. In this paper, we propose CenterArt, a novel approach for simultaneous 3D shape reconstruction and 6-DoF grasp estimation of articulated objects. CenterArt takes RGB-D images of the scene as input and first predicts the shape and joint codes through an encoder. The decoder then leverages these codes to reconstruct 3D shapes and estimate 6-DoF grasp poses of the objects. We further develop a mechanism for generating a dataset of 6-DoF grasp ground truth poses for articulated objects. CenterArt is trained on realistic scenes containing multiple articulated objects with randomized designs, textures, lighting conditions, and realistic depths. We perform extensive experiments demonstrating that CenterArt outperforms existing methods in accuracy and robustness.

View on arXiv
Comments on this paper