ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.15189
55
9

Text2Grasp: Grasp synthesis by text prompts of object grasping parts

9 April 2024
Xiaoyun Chang
Yi Sun
ArXivPDFHTML
Abstract

The hand plays a pivotal role in human ability to grasp and manipulate objects and controllable grasp synthesis is the key for successfully performing downstream tasks. Existing methods that use human intention or task-level language as control signals for grasping inherently face ambiguity. To address this challenge, we propose a grasp synthesis method guided by text prompts of object grasping parts, Text2Grasp, which provides more precise control. Specifically, we present a two-stage method that includes a text-guided diffusion model TextGraspDiff to first generate a coarse grasp pose, then apply a hand-object contact optimization process to ensure both plausibility and diversity. Furthermore, by leveraging Large Language Model, our method facilitates grasp synthesis guided by task-level and personalized text descriptions without additional manual annotations. Extensive experiments demonstrate that our method achieves not only accurate part-level grasp control but also comparable performance in grasp quality.

View on arXiv
Comments on this paper