ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.15726
18
1

Deep Predictive Model Learning with Parametric Bias: Handling Modeling Difficulties and Temporal Model Changes

24 April 2024
Kento Kawaharazuka
K. Okada
Masayuki Inaba
ArXivPDFHTML
Abstract

When a robot executes a task, it is necessary to model the relationship among its body, target objects, tools, and environment, and to control its body to realize the target state. However, it is difficult to model them using classical methods if the relationship is complex. In addition, when the relationship changes with time, it is necessary to deal with the temporal changes of the model. In this study, we have developed Deep Predictive Model with Parametric Bias (DPMPB) as a more human-like adaptive intelligence to deal with these modeling difficulties and temporal model changes. We categorize and summarize the theory of DPMPB and various task experiments on the actual robots, and discuss the effectiveness of DPMPB.

View on arXiv
Comments on this paper