ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16233
  4. Cited By
AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with
  Foundation Models

AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models

24 April 2024
Zhiqiang Tang
Haoyang Fang
Su Zhou
Taojiannan Yang
Zihan Zhong
Tony Hu
Katrin Kirchhoff
George Karypis
ArXivPDFHTML

Papers citing "AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models"

4 / 4 papers shown
Title
Convolution Meets LoRA: Parameter Efficient Finetuning for Segment
  Anything Model
Convolution Meets LoRA: Parameter Efficient Finetuning for Segment Anything Model
Zihan Zhong
Zhiqiang Tang
Tong He
Haoyang Fang
Chun Yuan
33
40
0
31 Jan 2024
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
77
268
0
13 Jul 2021
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
81
576
0
13 Mar 2020
Learning Deep Representations of Fine-grained Visual Descriptions
Learning Deep Representations of Fine-grained Visual Descriptions
Scott E. Reed
Zeynep Akata
Bernt Schiele
Honglak Lee
OCL
VLM
160
804
0
17 May 2016
1