ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16911
  4. Cited By
HEroBM: a deep equivariant graph neural network for universal
  backmapping from coarse-grained to all-atom representations

HEroBM: a deep equivariant graph neural network for universal backmapping from coarse-grained to all-atom representations

25 April 2024
Daniele Angioletti
S. Raniolo
V. Limongelli
ArXivPDFHTML

Papers citing "HEroBM: a deep equivariant graph neural network for universal backmapping from coarse-grained to all-atom representations"

2 / 2 papers shown
Title
Directional Message Passing on Molecular Graphs via Synthetic
  Coordinates
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
42
35
0
08 Nov 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
1