Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.18444
Cited By
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
29 April 2024
Song Mei
3DV
AI4CE
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models"
15 / 15 papers shown
Title
Learning curves theory for hierarchically compositional data with power-law distributed features
Francesco Cagnetta
Hyunmo Kang
M. Wyart
12
0
0
11 May 2025
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Francesco Cagnetta
Alessandro Favero
Antonio Sclocchi
M. Wyart
9
0
0
11 May 2025
Physics-informed 4D X-ray image reconstruction from ultra-sparse spatiotemporal data
Zisheng Yao
Yuhe Zhang
Zhe Hu
Robert Klöfkorn
Tobias Ritschel
Pablo Villanueva-Perez
AI4CE
58
1
0
04 Apr 2025
Probing the Latent Hierarchical Structure of Data via Diffusion Models
Antonio Sclocchi
Alessandro Favero
Noam Itzhak Levi
M. Wyart
DiffM
23
1
0
17 Oct 2024
How transformers learn structured data: insights from hierarchical filtering
Jerome Garnier-Brun
Marc Mézard
Emanuele Moscato
Luca Saglietti
16
2
0
27 Aug 2024
Towards a theory of how the structure of language is acquired by deep neural networks
Francesco Cagnetta
M. Wyart
21
8
0
28 May 2024
Dynamical Regimes of Diffusion Models
Giulio Biroli
Tony Bonnaire
Valentin De Bortoli
Marc Mézard
DiffM
34
40
0
28 Feb 2024
Mean-field variational inference with the TAP free energy: Geometric and statistical properties in linear models
Michael Celentano
Zhou Fan
Licong Lin
Song Mei
FedML
24
5
0
14 Nov 2023
Diffusion Models are Minimax Optimal Distribution Estimators
Kazusato Oko
Shunta Akiyama
Taiji Suzuki
DiffM
58
84
0
03 Mar 2023
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
21
10
0
21 Oct 2022
Convergence of score-based generative modeling for general data distributions
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
174
128
0
26 Sep 2022
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
123
245
0
22 Sep 2022
UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer
Haonan Wang
Peng Cao
Jiaqi Wang
Osmar R. Zaiane
MedIm
ViT
117
692
0
09 Sep 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
44
89
0
25 Feb 2021
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
V. Papyan
Yaniv Romano
Michael Elad
48
283
0
27 Jul 2016
1