ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.18539
  4. Cited By
Enhancing Boundary Segmentation for Topological Accuracy with
  Skeleton-based Methods

Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods

29 April 2024
Chuni Liu
Boyuan Ma
Xiaojuan Ban
Yujie Xie
Hao Wang
Weihua Xue
Jingchao Ma
Ke Xu
ArXivPDFHTML

Papers citing "Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods"

5 / 5 papers shown
Title
Steerable Pyramid Weighted Loss: Multi-Scale Adaptive Weighting for Semantic Segmentation
Renhao Lu
SSeg
84
0
0
09 Mar 2025
Disconnect to Connect: A Data Augmentation Method for Improving Topology Accuracy in Image Segmentation
Juan Miguel Valverde
Maja Østergaard
Adrian Rodriguez-Palomo
Peter Alling Strange Vibe
Nina Kølln Wittig
Henrik Birkedal
Anders Bjorholm Dahl
29
0
0
07 Mar 2025
TopoMortar: A dataset to evaluate image segmentation methods focused on topology accuracy
Juan Miguel Valverde
Motoya Koga
Nijihiko Otsuka
Anders Bjorholm Dahl
31
0
0
05 Mar 2025
Persistent Homology with Improved Locality Information for more
  Effective Delineation
Persistent Homology with Improved Locality Information for more Effective Delineation
Doruk Öner
A. Garin
Mateusz Koziñski
K. Hess
Pascal Fua
40
7
0
12 Oct 2021
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
229
74,467
0
18 May 2015
1