ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.00843
26
0

Can a Hallucinating Model help in Reducing Human "Hallucination"?

1 May 2024
Sowmya S. Sundaram
Balaji Alwar
    HILM
    LRM
ArXivPDFHTML
Abstract

The prevalence of unwarranted beliefs, spanning pseudoscience, logical fallacies, and conspiracy theories, presents substantial societal hurdles and the risk of disseminating misinformation. Utilizing established psychometric assessments, this study explores the capabilities of large language models (LLMs) vis-a-vis the average human in detecting prevalent logical pitfalls. We undertake a philosophical inquiry, juxtaposing the rationality of humans against that of LLMs. Furthermore, we propose methodologies for harnessing LLMs to counter misconceptions, drawing upon psychological models of persuasion such as cognitive dissonance theory and elaboration likelihood theory. Through this endeavor, we highlight the potential of LLMs as personalized misinformation debunking agents.

View on arXiv
Comments on this paper