Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.01491
Cited By
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
2 May 2024
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials"
7 / 7 papers shown
Title
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
61
5
0
28 Aug 2024
A
s
p
a
r
a
g
u
s
{\it Asparagus}
Asparagus
: A Toolkit for Autonomous, User-Guided Construction of Machine-Learned Potential Energy Surfaces
K. Töpfer
Luis Itza Vazquez-Salazar
Markus Meuwly
27
3
0
21 Jul 2024
Lifelong Machine Learning Potentials
Marco Eckhoff
Markus Reiher
54
20
0
10 Mar 2023
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
24
105
0
21 Sep 2022
Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
Viktor Zaverkin
Johannes Kastner
27
67
0
15 Sep 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
142
242
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
1