ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01775
  4. Cited By
Torch2Chip: An End-to-end Customizable Deep Neural Network Compression
  and Deployment Toolkit for Prototype Hardware Accelerator Design

Torch2Chip: An End-to-end Customizable Deep Neural Network Compression and Deployment Toolkit for Prototype Hardware Accelerator Design

2 May 2024
Jian Meng
Yuan Liao
Anupreetham Anupreetham
Ahmed Hassan
Shixing Yu
Han-Sok Suh
Xiaofeng Hu
Jae-sun Seo
    MQ
ArXivPDFHTML

Papers citing "Torch2Chip: An End-to-end Customizable Deep Neural Network Compression and Deployment Toolkit for Prototype Hardware Accelerator Design"

4 / 4 papers shown
Title
BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration
Yuzong Chen
Ahmed F. AbouElhamayed
Xilai Dai
Yang Wang
Marta Andronic
G. Constantinides
Mohamed S. Abdelfattah
MQ
93
0
0
18 Nov 2024
I-ViT: Integer-only Quantization for Efficient Vision Transformer
  Inference
I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference
Zhikai Li
Qingyi Gu
MQ
36
94
0
04 Jul 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
255
7,337
0
11 Nov 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
1