Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.05665
Cited By
SubGDiff: A Subgraph Diffusion Model to Improve Molecular Representation Learning
9 May 2024
Jiying Zhang
Zijing Liu
Yu Wang
Yu Li
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SubGDiff: A Subgraph Diffusion Model to Improve Molecular Representation Learning"
6 / 6 papers shown
Title
Diffusion Models for Graphs Benefit From Discrete State Spaces
K. Haefeli
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
DiffM
71
51
0
04 Oct 2022
Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast
Yuyang Wang
Rishikesh Magar
Chen Liang
A. Farimani
32
78
0
18 Feb 2022
Molecular Representation Learning via Heterogeneous Motif Graph Neural Networks
Zhaoning Yu
Hongyang Gao
21
38
0
01 Feb 2022
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
106
294
0
07 Oct 2021
Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs
Zhao Xu
Youzhi Luo
Xuan Zhang
Xinyi Xu
Yaochen Xie
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
33
39
0
30 Sep 2021
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
1