ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.07969
  4. Cited By
Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly
  Segmentation

Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation

13 May 2024
Kevin Stangl
Marius Arvinte
Weilin Xu
Cory Cornelius
    VLM
    UQCV
ArXivPDFHTML

Papers citing "Investigating the Semantic Robustness of CLIP-based Zero-Shot Anomaly Segmentation"

1 / 1 papers shown
Title
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings
  for Robust Large Vision-Language Models
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models
Christian Schlarmann
Naman D. Singh
Francesco Croce
Matthias Hein
VLM
AAML
36
36
0
19 Feb 2024
1