ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.09831
  4. Cited By
Nearly Minimax Optimal Regret for Multinomial Logistic Bandit

Nearly Minimax Optimal Regret for Multinomial Logistic Bandit

16 May 2024
Joongkyu Lee
Min-hwan Oh
ArXivPDFHTML

Papers citing "Nearly Minimax Optimal Regret for Multinomial Logistic Bandit"

7 / 7 papers shown
Title
Dynamic Assortment Selection and Pricing with Censored Preference Feedback
Dynamic Assortment Selection and Pricing with Censored Preference Feedback
Jung-hun Kim
Min-hwan Oh
33
0
0
03 Apr 2025
Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update
Jing Wang
Yu-Jie Zhang
Peng Zhao
Zhi-Hua Zhou
51
0
0
01 Mar 2025
Learning an Optimal Assortment Policy under Observational Data
Learning an Optimal Assortment Policy under Observational Data
Yuxuan Han
Han Zhong
Miao Lu
Jose H. Blanchet
Zhengyuan Zhou
OffRL
65
0
0
10 Feb 2025
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Long-Fei Li
Yu-Jie Zhang
Peng Zhao
Zhi-Hua Zhou
96
4
0
17 Jan 2025
Optimal Design for Reward Modeling in RLHF
Optimal Design for Reward Modeling in RLHF
Antoine Scheid
Etienne Boursier
Alain Durmus
Michael I. Jordan
Pierre Ménard
Eric Moulines
Michal Valko
OffRL
45
6
0
22 Oct 2024
Double Doubly Robust Thompson Sampling for Generalized Linear Contextual
  Bandits
Double Doubly Robust Thompson Sampling for Generalized Linear Contextual Bandits
Wonyoung Hedge Kim
Kyungbok Lee
M. Paik
28
13
0
15 Sep 2022
Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Marc Abeille
Louis Faury
Clément Calauzènes
96
37
0
23 Oct 2020
1