Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.12474
Cited By
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing
21 May 2024
Keke Huang
Yu Guang Wang
Ming Li
Pietro Lió
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing"
9 / 9 papers shown
Title
Homophily Heterogeneity Matters in Graph Federated Learning: A Spectrum Sharing and Complementing Perspective
Wentao Yu
FedML
43
0
0
20 Feb 2025
DLGNet: Hyperedge Classification through Directed Line Graphs for Chemical Reactions
Stefano Fiorini
Giulia M. Bovolenta
Stefano Coniglio
Michele Ciavotta
Pietro Morerio
Michele Parrinello
Alessio Del Bue
GNN
AI4CE
60
0
0
09 Oct 2024
Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning
Qincheng Lu
Jiaqi Zhu
Sitao Luan
Xiao-Wen Chang
23
2
0
15 Sep 2024
Bridging Smoothness and Approximation: Theoretical Insights into Over-Smoothing in Graph Neural Networks
Guangrui Yang
Jianfei Li
Ming Li
Han Feng
Ding-Xuan Zhou
23
0
0
01 Jul 2024
Heterophilous Distribution Propagation for Graph Neural Networks
Zhuonan Zheng
Sheng Zhou
Hongjia Xu
Ming Gu
Yilun Xu
Ao Li
Yuhong Li
Jingjun Gu
Jiajun Bu
38
0
0
31 May 2024
Specformer: Spectral Graph Neural Networks Meet Transformers
Deyu Bo
Chuan Shi
Lele Wang
Renjie Liao
66
74
0
02 Mar 2023
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
70
175
0
23 May 2022
How Framelets Enhance Graph Neural Networks
Xuebin Zheng
Bingxin Zhou
Junbin Gao
Yu Guang Wang
Pietro Lió
Ming Li
Guido Montúfar
48
69
0
13 Feb 2021
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
1